When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    These are two examples in which both the subset and the whole set are infinite, and the subset has the same cardinality (the concept that corresponds to size, that is, the number of elements, of a finite set) as the whole; such cases can run counter to one's initial intuition. The set of rational numbers is a proper subset of the set of real ...

  3. Natural density - Wikipedia

    en.wikipedia.org/wiki/Natural_density

    A subset A of positive integers has natural density α if the proportion of elements of A among all natural numbers from 1 to n converges to α as n tends to infinity.. More explicitly, if one defines for any natural number n the counting function a(n) as the number of elements of A less than or equal to n, then the natural density of A being α exactly means that [1]

  4. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    There are also many ways to construct "the" real number system, and a popular approach involves starting from natural numbers, then defining rational numbers algebraically, and finally defining real numbers as equivalence classes of their Cauchy sequences or as Dedekind cuts, which are certain subsets of rational numbers. [19]

  5. Dense set - Wikipedia

    en.wikipedia.org/wiki/Dense_set

    In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine ...

  6. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.

  7. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    The completeness of the real numbers implies (and is equivalent to) that any bounded nonempty subset of the real numbers has an infimum and a supremum. If S {\displaystyle S} is not bounded below, one often formally writes inf S = − ∞ . {\displaystyle \inf _{}S=-\infty .}

  8. Number - Wikipedia

    en.wikipedia.org/wiki/Number

    If the real part of a complex number is 0, then the number is called an imaginary number or is referred to as purely imaginary; if the imaginary part is 0, then the number is a real number. Thus the real numbers are a subset of the complex numbers.

  9. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...