Search results
Results From The WOW.Com Content Network
The Spearman correlation coefficient is often described as being "nonparametric". This can have two meanings. First, a perfect Spearman correlation results when X and Y are related by any monotonic function. Contrast this with the Pearson correlation, which only gives a perfect value when X and Y are related by a linear function.
Gene Glass (1965) noted that the rank-biserial can be derived from Spearman's . "One can derive a coefficient defined on X, the dichotomous variable, and Y, the ranking variable, which estimates Spearman's rho between X and Y in the same way that biserial r estimates Pearson's r between two normal variables” (p. 91). The rank-biserial ...
Pearson/Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1). Most correlation measures are sensitive to the manner in which X and Y are sampled. Dependencies tend to be stronger if viewed over a wider range of values.
Closely related to Spearman's hypothesis is the hypothesis that the magnitude of certain group differences correlates with within-group heritability estimates. Arthur Jensen and J. Phillippe Rushton , for example, reported in 2010 that the found psychometric meta-analytic correlation between g-loadings and heritability estimates was 1.
In statistics, the Kendall rank correlation coefficient, commonly referred to as Kendall's τ coefficient (after the Greek letter τ, tau), is a statistic used to measure the ordinal association between two measured quantities.
To calculate r pb, assume that the dichotomous variable Y has the two values 0 and 1. If we divide the data set into two groups, group 1 which received the value "1" on Y and group 2 which received the value "0" on Y, then the point-biserial correlation coefficient is calculated as follows:
Formally, the partial correlation between X and Y given a set of n controlling variables Z = {Z 1, Z 2, ..., Z n}, written ρ XY·Z, is the correlation between the residuals e X and e Y resulting from the linear regression of X with Z and of Y with Z, respectively.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.