When.com Web Search

  1. Ad

    related to: how to factor out polynomials completely calculator with exponents

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b). In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  3. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out. In the case of a cubic polynomial , if the cubic is factorizable at all, the rational root test gives a complete factorization, either into a linear factor and an irreducible quadratic factor, or into three ...

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  5. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.

  6. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities: [11] (p 52) ( x ) m + n = ( x ) m ( x − m ) n = ( x ) n ( x − n ) m x ( m + n ) = x ( m ) ( x + m ) ( n ) = x ( n ) ( x + n ) ( m ) x ( − n ) = Γ ( x − n ) Γ ( x ) = ( x − n − 1 ) !

  8. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  9. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    The result R = 0 occurs if and only if the polynomial A has B as a factor. Thus long division is a means for testing whether one polynomial has another as a factor, and, if it does, for factoring it out. For example, if a root r of A is known, it can be factored out by dividing A by (x – r).