Search results
Results From The WOW.Com Content Network
The SI defines the coulomb as "the quantity of electricity carried in 1 second by a current of 1 ampere". Then the value of the elementary charge e is defined to be 1.602 176 634 × 10 −19 C. [3]
In the International System of Units (SI), electric current is expressed in units of ampere (sometimes called an "amp", symbol A), which is equivalent to one coulomb per second. The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ).
The SI unit of charge, the coulomb, "is the quantity of electricity carried in 1 second by a current of 1 ampere". [19] Conversely, a current of one ampere is one coulomb of charge going past a given point per second:
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
In the SI system of units, the value of the elementary charge is exactly defined as = 1.602 176 634 × 10 −19 coulombs, or 160.2176634 zeptocoulombs (zC). [3] Since the 2019 revision of the SI, the seven SI base units are defined in terms of seven fundamental physical constants, of which the elementary charge is one.
The water volume flow rate, as in liters per second, is the analog of current, as in coulombs per second. Finally, flow restrictors—such as apertures placed in pipes between points where the water pressure is measured—are the analog of resistors.
299,792,458 meters per second (m/s) speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.