Search results
Results From The WOW.Com Content Network
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The Pearson product-moment correlation coefficient, also known as r, R, or Pearson's r, is a measure of the strength and direction of the linear relationship between two variables that is defined as the covariance of the variables divided by the product of their standard deviations. [4]
An entity closely related to the covariance matrix is the matrix of Pearson product-moment correlation coefficients between each of the random variables in the random vector , which can be written as = ( ()) ( ()), where is the matrix of the diagonal elements of (i.e., a diagonal matrix of the variances of for =, …,).
The correlation between the two sets of () / distances is calculated, and this is both the measure of correlation reported and the test statistic on which the test is based. In principle, any correlation coefficient could be used, but normally the Pearson product-moment correlation coefficient is used.
For this reason, covariance is standardized by dividing by the product of the standard deviations of the two variables to produce the Pearson product–moment correlation coefficient (also referred to as the Pearson correlation coefficient or correlation coefficient), which is usually denoted by the letter “r.” [3]
Mean-centering is unnecessary if performing a principal components analysis on a correlation matrix, as the data are already centered after calculating correlations. Correlations are derived from the cross-product of two standard scores (Z-scores) or statistical moments (hence the name: Pearson Product-Moment Correlation).
If this is the case, a biserial correlation would be the more appropriate calculation. The point-biserial correlation is mathematically equivalent to the Pearson (product moment) correlation coefficient; that is, if we have one continuously measured variable X and a dichotomous variable Y, r XY = r pb. This can be shown by assigning two ...
Normalized correlation is one of the methods used for template matching, a process used for finding instances of a pattern or object within an image. It is also the 2-dimensional version of Pearson product-moment correlation coefficient.