Search results
Results From The WOW.Com Content Network
Problems 1–7, 7B and 8–40 are concerned with arithmetic and elementary algebra. Problems 1–6 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4, and 1 + 2/3 + 1/3 = 2 by different fractions.
Image of Problem 14 from the Moscow Mathematical Papyrus. The problem includes a diagram indicating the dimensions of the truncated pyramid. Several problems compute the volume of cylindrical granaries (41, 42, and 43 of the RMP), while problem 60 RMP seems to concern a pillar or a cone instead of a pyramid.
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]
Image of Problem 14 from the Moscow Mathematical Papyrus. The problem includes a diagram indicating the dimensions of the truncated pyramid. There are only a limited number of problems from ancient Egypt that concern geometry. Geometric problems appear in both the Moscow Mathematical Papyrus (MMP) and in the Rhind Mathematical Papyrus (RMP).
The Tower of Hanoi (also called The problem of Benares Temple [1] or Tower of Brahma or Lucas' Tower [2] and sometimes pluralized as Towers, or simply pyramid puzzle [3]) is a mathematical game or puzzle consisting of three rods and a number of disks of various diameters, which can slide onto any rod.
A right pyramid is a pyramid whose base is circumscribed about a circle and the altitude of the pyramid meets the base at the circle's center; otherwise, it is oblique. [12] This pyramid may be classified based on the regularity of its bases. A pyramid with a regular polygon as the base is called a regular pyramid. [13]
The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":
The formula for the volume of a pyramid, base area × height 3 , {\displaystyle {\frac {{\text{base area}}\times {\text{height}}}{3}},} had been known to Euclid , but all proofs of it involve some form of limiting process or calculus , notably the method of exhaustion or, in more modern form, Cavalieri's principle .