When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.

  3. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  5. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where

  6. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    Definition: [7] The midpoint of two elements x and y in a vector space is the vector ⁠ 1 / 2 ⁠ (x + y). Theorem [ 7 ] [ 8 ] — Let A : XY be a surjective isometry between normed spaces that maps 0 to 0 ( Stefan Banach called such maps rotations ) where note that A is not assumed to be a linear isometry.

  7. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    In the Euclidean plane, reflections and glide reflections are the only two kinds of indirect (orientation-reversing) isometries. For example, there is an isometry consisting of the reflection on the x-axis, followed by translation of one unit parallel to it. In coordinates, it takes

  8. Mirror image - Wikipedia

    en.wikipedia.org/wiki/Mirror_image

    If a point of an object has coordinates (x, y, z) then the image of this point (as reflected by a mirror in the y, z plane) has coordinates (−x, y, z). Thus reflection is a reversal of the coordinate axis perpendicular to the mirror's surface.

  9. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    The term reflection is loose, and considered by some an abuse of language, with inversion preferred; however, point reflection is widely used. Such maps are involutions, meaning that they have order 2 – they are their own inverse: applying them twice yields the identity map – which is also true of other maps called reflections.