Search results
Results From The WOW.Com Content Network
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...
An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by
The "base radius" of a circular cone is the radius of its base; often this is simply called the radius of the cone. The aperture of a right circular cone is the maximum angle between two generatrix lines; if the generatrix makes an angle θ to the axis, the aperture is 2θ.
Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.
The magnitude of the solid angle expressed in steradians is defined as the quotient of the surface area of the spherical cap and the square of the sphere's radius. This is analogous to the way a plane angle projected onto a circle defines a circular arc on the circumference, whose length is proportional to the angle. Steradians can be used to ...
The results are encouraging, particularly given the prior concerns surrounding antibiotics and gut health. However, as always, antibiotics should be used responsibly and as prescribed by ...
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.