Search results
Results From The WOW.Com Content Network
The formula for the volume of a frustum of a paraboloid [23] [24] is: V = (π h/2)(r 1 2 + r 2 2), where h = height of the frustum, r 1 is the radius of the base of the frustum, and r 2 is the radius of the top of the frustum. This allows us to use a paraboloid frustum where that form appears more appropriate than a cone.
Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center to the edge Solid ellipsoid: a, b, c = the principal semi-axes of the ellipsoid
Paraboloid of revolution. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid made by a plane parallel to
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates.They possess elliptic paraboloids as one-coordinate surfaces.
The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).
An oblique projection of a focus-balanced parabolic reflector. It is sometimes useful if the centre of mass of a reflector dish coincides with its focus.This allows it to be easily turned so it can be aimed at a moving source of light, such as the Sun in the sky, while its focus, where the target is located, is stationary.
The condition of balance ensures that the volume of the cone plus the volume of the sphere is equal to the volume of the cylinder. The volume of the cylinder is the cross section area, times the height, which is 2, or . Archimedes could also find the volume of the cone using the mechanical method, since, in modern terms, the integral involved ...
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.