When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.

  4. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  5. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    If only thirteen polyhedra are to be listed, the definition must use global symmetries of the polyhedron rather than local neighborhoods. In the aftermath, the elongated square gyrobicupola was withdrawn from the Archimedean solids and included into the Johnson solid instead, a convex polyhedron in which all of the faces are regular polygons. [16]

  6. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent . Uniform polyhedra may be regular (if also face- and edge-transitive ), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular ...

  7. Tetradecahedron - Wikipedia

    en.wikipedia.org/wiki/Tetradecahedron

    A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces. A tetradecahedron is sometimes called a tetrakaidecahedron. [1] [2] No difference in meaning is ascribed. [3] [4] The Greek word kai means 'and'.

  8. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    Image Regular star, great stellated dodecahedron, with regular pentagram faces Degenerate, 12 vertices in the center The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions.

  9. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry , such that they have 6 triangles at a vertex , except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra , of which all but the smallest one (which is a regular dodecahedron ) have mostly hexagonal faces.