Ad
related to: pulsed ultrasound vs. continuous flow of light energy test for water
Search results
Results From The WOW.Com Content Network
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
Low-intensity pulsed ultrasound (LIPUS) is a technology that can be used for therapeutic purposes. It exploits low intensity and pulsed mechanical waves in order to induce regenerative and anti-inflammatory effects on biological tissues, such as bone, [ 1 ] cartilage, and tendon. [ 2 ]
Both continuous wave and pulsed systems are used. The principle behind a pulsed-ultrasonic technology is that the transmit signal consists of short bursts of ultrasonic energy. After each burst, the electronics looks for a return signal within a small window of time corresponding to the time it takes for the energy to pass through the vessel.
The transducer is typically separated from the test object by a couplant [4] such as a gel, oil or water, [1] as in immersion testing. However, when ultrasonic testing is conducted with an Electromagnetic Acoustic Transducer (EMAT) the use of couplant is not required. There are two methods of receiving the ultrasound waveform: reflection and ...
Accounting for attenuation effects in ultrasound is important because a reduced signal amplitude can affect the quality of the image produced. By knowing the attenuation that an ultrasound beam experiences traveling through a medium, one can adjust the input signal amplitude to compensate for any loss of energy at the desired imaging depth. [2]
The transducer may be used in contact with the skin, as in fetal ultrasound imaging, or inserted into a body opening such as the rectum or vagina. Clinicians who perform ultrasound-guided procedures often use a probe positioning system to hold the ultrasonic transducer. [9] Compared to other medical imaging modalities, ultrasound has several ...
Laser ultrasonics is a contactless ultrasonic inspection technique based on excitation and ultrasound measurement using two lasers. A laser pulse is directed onto the sample under test and the interaction with the surface generates an ultrasonic pulse that propagates through the material.