Search results
Results From The WOW.Com Content Network
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
If n is a power of an odd prime number the formula for the totient says its totient can be a power of two only if n is a first power and n − 1 is a power of 2. The primes that are one more than a power of 2 are called Fermat primes, and only five are known: 3, 5, 17, 257, and 65537. Fermat and Gauss knew of these.
For example, for division by 3, the factors 1/3, 2/6, 3/9, or 194/582 could be used. Consequently, if Y were a power of two the division step would reduce to a fast right bit shift. The effect of calculating N/D as (N·X)/Y replaces a division with a multiply and a shift. Note that the parentheses are important, as N·(X/Y) will evaluate to zero.
For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative: 20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0, while 20 − 3 − 3 − 3 − 3 − 3 − 3 − 3 < 0. In this sense, a quotient is the integer part of the ratio of two numbers. [9]
Since every unit vector can be thought of as a point on a unit sphere, and since a versor can be thought of as the quotient of two vectors, a versor has a representative great circle arc, called a vector arc, connecting these two points, drawn from the divisor or lower part of quotient, to the dividend or upper part of the quotient.