Ad
related to: condition for onto function calculator
Search results
Results From The WOW.Com Content Network
In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...
A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1] This equivalent condition is formally expressed as follows:
Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.
Functions that have inverse functions are said to be invertible. A function is invertible if and only if it is a bijection. Stated in concise mathematical notation, a function f: X → Y is bijective if and only if it satisfies the condition for every y in Y there is a unique x in X with y = f(x).
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Partial functions are defined similarly to ordinary functions, with the "total" condition removed. That is, a partial function from X to Y is a binary relation R between X and Y such that, for every x ∈ X , {\displaystyle x\in X,} there is at most one y in Y such that ( x , y ) ∈ R . {\displaystyle (x,y)\in R.}