Search results
Results From The WOW.Com Content Network
In mathematics, Meixner polynomials (also called discrete Laguerre polynomials) are a family of discrete orthogonal polynomials introduced by Josef Meixner . They are given in terms of binomial coefficients and the (rising) Pochhammer symbol by
The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]
The first book on the systematic algebraic solutions of linear and quadratic equations by the Persian scholar Muhammad ibn Mūsā al-Khwārizmī. The book is considered to be the foundation of modern algebra and Islamic mathematics. [10] The word "algebra" itself is derived from the al-Jabr in the title of the book. [11]
The Dickson polynomial D n (x, α) (considered as a function of x with α fixed) is a permutation polynomial for the field with q elements if and only if n is coprime to q 2 − 1. [ 9 ] Fried (1970) proved that any integral polynomial that is a permutation polynomial for infinitely many prime fields is a composition of Dickson polynomials and ...
For example, in Chapter 1 of Hartshorne a variety over an algebraically closed field is defined to be a quasi-projective variety, [1]: 15 but from Chapter 2 onwards, the term variety (also called an abstract variety) refers to a more general object, which locally is a quasi-projective variety, but when viewed as a whole is not necessarily quasi ...
In general, when ℓ and m are integers, the regular solutions are sometimes called "associated Legendre polynomials", even though they are not polynomials when m is odd. The fully general class of functions with arbitrary real or complex values of ℓ and m are Legendre functions. In that case the parameters are usually labelled with Greek ...
Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.
The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. [1] Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra ...