Search results
Results From The WOW.Com Content Network
The MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y.
In bioinformatics, the root mean square deviation of atomic positions is the measure of the average distance between the atoms of superimposed proteins. In structure based drug design, the RMSD is a measure of the difference between a crystal conformation of the ligand conformation and a docking prediction.
Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
The standard deviation of the observed field () is side a, the standard deviation of the test field () is side b, the centered RMS difference (centered RMS difference is the mean-removed RMS difference, and is equivalent to the standard deviation of the model errors [17]) between the two fields (E′) is side c, and the cosine of the angle ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
A final significant difference between Ginnie Mae and Fannie Mae is that Ginnie Mae has the explicit support of the federal government. This means that if Ginnie Mae has financial difficulties ...
The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n.