Search results
Results From The WOW.Com Content Network
In mathematics, a variable (from Latin variabilis, "changeable") is a symbol, typically a letter, that refers to an unspecified mathematical object. [ 1 ] [ 2 ] [ 3 ] One says colloquially that the variable represents or denotes the object, and that any valid candidate for the object is the value of the variable.
Variable binding relates three things: a variable v, a location a for that variable in an expression and a non-leaf node n of the form Q(v, P). Note: we define a location in an expression as a leaf node in the syntax tree. Variable binding occurs when that location is below the node n. In the lambda calculus, x is a bound variable in the term M
The term Variable is relevant to several contexts, and is especially important to mathematics and computer science. Scientists and engineers will often use mathematical variables in formulae and equations, such as E = mc 2; they will also have their own special uses of the term. The term Variable can also occur in other contexts, such as ...
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
In mathematics, like terms are summands in a sum that differ only by a numerical factor. [1] Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression , like terms are those that contain the same variables to the same powers , possibly with different coefficients .
The set of variables of a term t is denoted by vars(t). A term that doesn't contain any variables is called a ground term; a term that doesn't contain multiple occurrences of a variable is called a linear term. For example, 2+2 is a ground term and hence also a linear term, x⋅(n+1) is a linear term, n⋅(n+1) is a non-linear term.
For example, (,) means that the distribution of the random variable X is standard normal. [2] 6. Notation for proportionality. See also ∝ for a less ambiguous symbol. ≡ 1. Denotes an identity; that is, an equality that is true whichever values are given to the variables occurring in it. 2.
The term was coined when variables began to be used for sets and mathematical structures. onto A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e ...