When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    In classical geometry, the bisection is a simple compass and straightedge construction, whose possibility depends on the ability to draw arcs of equal radii and different centers: The segment is bisected by drawing intersecting circles of equal radius , whose centers are the endpoints of the segment. The line determined by the points of ...

  3. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass. In 1837, Pierre Wantzel proved that the problem, as stated, is impossible to solve for ...

  4. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    It can only be used to draw a line segment between two points, or to extend an existing line segment. The compass can have an arbitrarily large radius with no markings on it (unlike certain real-world compasses). Circles and circular arcs can be drawn starting from two given points: the centre and a point on the circle. The compass may or may ...

  5. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Construct the line segment BB' and using a hyperbolic ruler, construct the line OI" such that OI" is perpendicular to BB' and parallel to B'I". Then, line OA is the angle bisector for ᗉ IAI'. [3] Case 2c: IB' is ultraparallel to I'B. Using the ultraparallel theorem, construct the common perpendicular of IB' and I'B, CC'. Let the intersection ...

  6. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    Incircle and excircles. Incircle and excircles of a triangle. In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. [1] An excircle or escribed circle[2 ...

  7. Cevian - Wikipedia

    en.wikipedia.org/wiki/Cevian

    Cevian. In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [1][2] Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva, who proved a well-known theorem about cevians which also bears his name.

  8. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    The line through P and Q (1) is an angle bisector. Rays have one angle bisector; lines have two, perpendicular to one another. Preliminary results. A few basic results are helpful in solving special cases of Apollonius' problem. Note that a line and a point can be thought of as circles of infinitely large and infinitely small radius, respectively.

  9. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    Extend the line BC forming the line CE. Extend the line DC forming the line CF. Place the marked ruler so it goes through A and one end, G, of the marked length falls on ray CF and the other end of the marked length, H, falls on ray CE. Thus GH is the given length. Then AG is the given length times .