When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Determining the number of clusters in a data set, a quantity often labelled k as in the k -means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k -means, k -medoids and expectation–maximization ...

  3. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    [59]: 354, 11.4.2.5 This does not mean that it is efficient to use Gaussian mixture modelling to compute k-means, but just that there is a theoretical relationship, and that Gaussian mixture modelling can be interpreted as a generalization of k-means; on the contrary, it has been suggested to use k-means clustering to find starting points for ...

  4. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Similar to other clustering evaluation metrics such as Silhouette score, the CH index can be used to find the optimal number of clusters k in algorithms like k-means, where the value of k is not known a priori. This can be done by following these steps: Perform clustering for different values of k. Compute the CH index for each clustering result.

  5. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    k. -means++. In data mining, k-means++[1][2] is an algorithm for choosing the initial values (or "seeds") for the k -means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k -means problem—a way of avoiding the sometimes poor clusterings found by the standard ...

  6. k-medians clustering - Wikipedia

    en.wikipedia.org/wiki/K-medians_clustering

    In statistics, k-medians clustering[1][2] is a cluster analysis algorithm. It is a generalization of the geometric median or 1-median algorithm, defined for a single cluster. k -medians is a variation of k -means clustering where instead of calculating the mean for each cluster to determine its centroid, one instead calculates the median.

  7. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Due to its convenient mathematical properties, the normal kernel is often used, which means K(x) = ϕ(x), where ϕ is the standard normal density function. The kernel density estimator then becomes. where is the standard deviation of the sample . The construction of a kernel density estimate finds interpretations in fields outside of density ...

  8. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  9. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    The k-medoids problem is a clustering problem similar to k -means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [1] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points labeled ...