When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    This model then serves as a reward function to improve an agent's policy through an optimization algorithm like proximal policy optimization. [ 3 ] [ 4 ] [ 5 ] RLHF has applications in various domains in machine learning, including natural language processing tasks such as text summarization and conversational agents , computer vision tasks ...

  3. Preference learning - Wikipedia

    en.wikipedia.org/wiki/Preference_learning

    Preference learning is a subfield of machine learning that focuses on modeling and predicting preferences based on observed preference information. [1] Preference learning typically involves supervised learning using datasets of pairwise preference comparisons, rankings, or other preference information.

  4. Category:Optimization algorithms and methods - Wikipedia

    en.wikipedia.org/wiki/Category:Optimization...

    Learning rate; Least squares; Least-squares spectral analysis; Lemke's algorithm; Level-set method; Levenberg–Marquardt algorithm; Lexicographic max-min optimization; Lexicographic optimization; Limited-memory BFGS; Line search; Linear-fractional programming; Lloyd's algorithm; Local convergence; Local search (optimization) Luus–Jaakola

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  7. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent. Specifically, it is a policy gradient method, often used for deep RL when the policy network is very large. The predecessor to PPO, Trust Region Policy Optimization (TRPO), was published in 2015.

  8. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2] Training data may, for example, consist of lists of items with some partial order specified between items in ...

  9. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    Neural architecture search (NAS) [1] [2] is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning.NAS has been used to design networks that are on par with or outperform hand-designed architectures.