When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pattern search (optimization) - Wikipedia

    en.wikipedia.org/wiki/Pattern_search_(optimization)

    Pattern search (also known as direct search, derivative-free search, or black-box search) is a family of numerical optimization methods that does not require a gradient. As a result, it can be used on functions that are not continuous or differentiable. One such pattern search method is "convergence" (see below), which is based on the theory of ...

  3. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    Another alternative to RLHF called Direct Preference Optimization (DPO) has been proposed to learn human preferences. Like RLHF, it has been applied to align pre-trained large language models using human-generated preference data. Unlike RLHF, however, which first trains a separate intermediate model to understand what good outcomes look like ...

  4. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    IMSL Numerical Libraries – linear, quadratic, nonlinear, and sparse QP and LP optimization algorithms implemented in standard programming languages C, Java, C# .NET, Fortran, and Python. IOSO – (Indirect optimization on the basis of Self-Organization) a multi-objective, multidimensional nonlinear optimization technology.

  5. Random search - Wikipedia

    en.wikipedia.org/wiki/Random_search

    Random search (RS) is a family of numerical optimization methods that do not require the gradient of the optimization problem, and RS can hence be used on functions that are not continuous or differentiable. Such optimization methods are also known as direct-search, derivative-free, or black-box methods.

  6. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [ 1 ] on problems that can be solved by alternative methods.

  7. Category:Optimization algorithms and methods - Wikipedia

    en.wikipedia.org/wiki/Category:Optimization...

    Bacterial colony optimization; Barzilai-Borwein method; Basin-hopping; Benson's algorithm; Berndt–Hall–Hall–Hausman algorithm; Bin covering problem; Bin packing problem; Bland's rule; Branch and bound; Branch and cut; Branch and price; Bregman Lagrangian; Bregman method; Broyden–Fletcher–Goldfarb–Shanno algorithm

  8. Preference learning - Wikipedia

    en.wikipedia.org/wiki/Preference_learning

    Preference learning is a subfield of machine learning that focuses on modeling and predicting preferences based on observed preference information. [1] Preference learning typically involves supervised learning using datasets of pairwise preference comparisons, rankings, or other preference information.

  9. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...