Search results
Results From The WOW.Com Content Network
The role that plastoquinone plays in photosynthesis, more specifically in the light-dependent reactions of photosynthesis, is that of a mobile electron carrier through the membrane of the thylakoid. [2] Plastoquinone is reduced when it accepts two electrons from photosystem II and two hydrogen cations (H +) from the stroma of the chloroplast ...
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
Photosystem II is present on the thylakoid membranes inside chloroplasts, the site of photosynthesis in green plants. [9] The structure of Photosystem II is remarkably similar to the bacterial reaction center, and it is theorized that they share a common ancestor. The core of Photosystem II consists of two subunits referred to as D1 and D2 ...
In photosynthesis, plastocyanin functions as an electron transfer agent between cytochrome f of the cytochrome b 6 f complex from photosystem II and P700+ from photosystem I. Cytochrome b 6 f complex and P700 + are both membrane-bound proteins with exposed residues on the lumen-side of the thylakoid membrane of chloroplasts. Cytochrome f acts ...
The cytochrome b 6 f complex is a dimer, with each monomer composed of eight subunits. [3] These consist of four large subunits: a 32 kDa cytochrome f with a c-type cytochrome, a 25 kDa cytochrome b 6 with a low- and high-potential heme group, a 19 kDa Rieske iron-sulfur protein containing a [2Fe-2S] cluster, and a 17 kDa subunit IV; along with four small subunits (3-4 kDa): PetG, PetL, PetM ...
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .
A major function of the thylakoid membrane and its integral photosystems is the establishment of chemiosmotic potential. The carriers in the electron transport chain use some of the electron's energy to actively transport protons from the stroma to the lumen .
The electron transfers from pheophytin to plastoquinone (PQ), which takes 2e-(in two steps) from pheophytin, and two H + Ions from the stroma to form PQH 2. This plastoquinol is later oxidized back to PQ, releasing the 2e-to the cytochrome b 6 f complex and the two H + ions into the thylakoid lumen.