When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result.

  3. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    w i are quadrature weights, and; x i are the roots of the nth Legendre polynomial. This choice of quadrature weights w i and quadrature nodes x i is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. Many algorithms have been developed for computing Gauss–Legendre quadrature rules.

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature ; [ 1 ] others take "quadrature" to include higher-dimensional integration.

  5. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    In mathematics, particularly in geometry, quadrature (also called squaring) is a historical process of drawing a square with the same area as a given plane figure or computing the numerical value of that area. A classical example is the quadrature of the circle (or squaring the circle).

  6. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  7. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation points. The Gauss–Legendre method based on s points has order 2s. [2] All Gauss–Legendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  8. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    They are closely related to spectral methods, but complement the basis by an additional pseudo-spectral basis, which allows representation of functions on a quadrature grid [definition needed]. This simplifies the evaluation of certain operators, and can considerably speed up the calculation when using fast algorithms such as the fast Fourier ...

  9. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    These zeros play an important role in numerical integration based on Gaussian quadrature. The specific quadrature based on the P n {\displaystyle P_{n}} 's is known as Gauss-Legendre quadrature . From this property and the facts that P n ( ± 1 ) ≠ 0 {\displaystyle P_{n}(\pm 1)\neq 0} , it follows that P n ( x ) {\displaystyle P_{n}(x)} has n ...