When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    The linear dependency of a sequence of vectors does not depend of the order of the terms in the sequence. This allows defining linear independence for a finite set of vectors: A finite set of vectors is linearly independent if the sequence obtained by ordering them is linearly independent. In other words, one has the following result that is ...

  3. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  4. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    In linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors , …, in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product = , . [1]

  5. Outline of linear algebra - Wikipedia

    en.wikipedia.org/wiki/Outline_of_linear_algebra

    Linear combination; Linear span; Linear independence; Scalar multiplication; Basis. Change of basis; Hamel basis; Cyclic decomposition theorem; Dimension theorem for vector spaces. Hamel dimension; Examples of vector spaces; Linear map. Shear mapping or Galilean transformation; Squeeze mapping or Lorentz transformation; Linear subspace. Row and ...

  6. Glossary of linear algebra - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_linear_algebra

    linear form A linear map from a vector space to its field of scalars [8] linear independence Property of being not linearly dependent. [9] linear map A function between vector space s which respects addition and scalar multiplication. linear transformation A linear map whose domain and codomain are equal; it is generally supposed to be invertible.

  7. Alternant matrix - Wikipedia

    en.wikipedia.org/wiki/Alternant_matrix

    The alternant can be used to check the linear independence of the functions ,, …, in function space.For example, let () = ⁡ (), = ⁡ and choose =, = /.Then the alternant is the matrix [] and the alternant determinant is .

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Linear independence — two or more vectors are linearly independent if there is no way to construct one from linear combinations of the others. Matrix exponential — defined by the exponential series. Matrix representation of conic sections; Pseudoinverse — a generalization of the inverse matrix.

  9. Lindemann–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Lindemann–Weierstrass...

    The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem.Charles Hermite first proved the simpler theorem where the α i exponents are required to be rational integers and linear independence is only assured over the rational integers, [4] [5] a result sometimes referred to as Hermite's theorem. [6]