When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A point where a function is discontinuous is called a discontinuity. Using mathematical notation, several ways exist to define continuous functions in the three senses mentioned above. Let f : D → R {\displaystyle f:D\to \mathbb {R} } be a function defined on a subset D {\displaystyle D} of the set R {\displaystyle \mathbb {R} } of real numbers.

  5. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    A linear map between two topological vector spaces, such as normed spaces for example, is continuous (everywhere) if and only if there exists a point at which it is continuous, in which case it is even uniformly continuous. Consequently, every linear map is either continuous everywhere or else continuous nowhere.

  6. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Since the Gibbs phenomenon comes from undershooting, it may be eliminated by using kernels that are never negative, such as the Fejér kernel. [12] [13]In practice, the difficulties associated with the Gibbs phenomenon can be ameliorated by using a smoother method of Fourier series summation, such as Fejér summation or Riesz summation, or by using sigma-approximation.

  7. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...

  8. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    Every discontinuity of a Darboux function is essential, that is, at any point of discontinuity, at least one of the left hand and right hand limits does not exist. An example of a Darboux function that is discontinuous at one point is the topologist's sine curve function: