Search results
Results From The WOW.Com Content Network
hydrogen sulfide chemosynthesis: [1] 18H 2 S + 6CO 2 + 3 O 2 → C 6 H 12 O 6 (carbohydrate) + 12H 2 O + 18 S. In the above process, hydrogen sulfide serves as a source of electrons for the reaction. [6] Instead of releasing oxygen gas while fixing carbon dioxide as in photosynthesis, hydrogen sulfide chemosynthesis produces solid globules of ...
The biochemistry of hydrogen sulfide is a key part of the chemistry of the iron-sulfur world. In this model of the origin of life on Earth, geologically produced hydrogen sulfide is postulated as an electron donor driving the reduction of carbon dioxide.
Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen).
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
Photosynthesis is the only process that allows the conversion of atmospheric carbon (CO2) to organic (solid) carbon, and this process plays an essential role in climate models. This lead researchers to study the sun-induced chlorophyll fluorescence (i.e., chlorophyll fluorescence that uses the Sun as illumination source; the glow of a plant) as ...
Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant. Composite image showing the global distribution of photosynthesis, including both oceanic phytoplankton and terrestrial vegetation. Dark red and blue-green indicate regions of high photosynthetic activity in the ocean and on land, respectively.
Some bacteria use light energy to couple sulfur oxidation to carbon dioxide (CO 2) fixation for growth. These fall into two general groups: green sulfur bacteria (GSB) and purple sulfur bacteria (PSB). [6] However, some Cyanobacteria are also able to use hydrogen sulfide as an electron donor during anoxygenic photosynthesis. [7]
In chemistry, many reactions depend on the absorption of photons to provide the energy needed to overcome the activation energy barrier and hence can be labelled light-dependent. Such reactions range from the silver halide reactions used in photographic film to the creation and destruction of ozone in the upper atmosphere.