Search results
Results From The WOW.Com Content Network
An action potential (or nerve impulse) is a transient alteration of the transmembrane voltage (or membrane potential) across the membrane in an excitable cell generated by the activity of voltage-gated ion channels embedded in the membrane. The best known action potentials are pulse-like waves that travel along the axons of neurons. Membrane ...
The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact experimental technique used for acquiring the signal.
[ac] When an action potential reaches such a synapse, the ionic currents flowing into the presynaptic cell can cross the barrier of the two cell membranes and enter the postsynaptic cell through pores known as connexons. [ad] Thus, the ionic currents of the presynaptic action potential can directly stimulate the postsynaptic cell.
Once this initial action potential is initiated, principally at the axon hillock, it propagates down the length of the axon. Under normal conditions, the action potential would attenuate very quickly due to the porous nature of the cell membrane. To ensure faster and more efficient propagation of action potentials, the axon is myelinated ...
Figure B. is a recording of an actual action potential N.B. Actual recordings of action potentials are often distorted compared to the schematic view because of variations in electrophysiological techniques used to make the recording. In neurophysiology, a dendritic spike refers to an action potential generated in the dendrite of a neuron ...
Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.
Alike individual action potentials, CAP waveforms are typically biphasic presenting a negative and positive peak. The morphological attributes of the CAP (amplitude, spread, latency) depend on various factors including electrode placement, stimulus intensity, number of fibers recruited, the synchronization of action potentials, and conduction ...
Illustration of the major elements in chemical synaptic transmission. An electrochemical wave called an action potential travels along the axon of a neuron.When the wave reaches a synapse, it provokes release of a puff of neurotransmitter molecules, which bind to chemical receptor molecules located in the membrane of another neuron, on the opposite side of the synapse.