When.com Web Search

  1. Ads

    related to: inscribed angles practice worksheet answers

Search results

  1. Results From The WOW.Com Content Network
  2. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    The previous case can be extended to cover the case where the measure of the inscribed angle is the difference between two inscribed angles as discussed in the first part of this proof. Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle ∠DVC is an inscribed angle.

  3. Ptolemy's table of chords - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_table_of_chords

    For tiny arcs, the chord is to the arc angle in degrees as π is to 3, or more precisely, the ratio can be made as close as desired to ⁠ π / 3 ⁠ ≈ 1.047 197 55 by making θ small enough. Thus, for the arc of ⁠ 1 / 2 ⁠ °, the chord length is slightly more than the arc angle in degrees. As the arc increases, the ratio of the chord to ...

  4. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter .

  5. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    As stated above, Thales's theorem is a special case of the inscribed angle theorem (the proof of which is quite similar to the first proof of Thales's theorem given above): Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following:

  6. Intersecting secants theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_secants_theorem

    In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle.

  7. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    where θ is half the sum of any two opposite angles. (The choice of which pair of opposite angles is irrelevant: if the other two angles are taken, half their sum is 180° − θ. Since cos(180° − θ) = −cos θ, we have cos 2 (180° − θ) = cos 2 θ.) This more general formula is known as Bretschneider's formula.

  9. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.