When.com Web Search

  1. Ads

    related to: decision tree example problems and solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees, influence diagrams, utility functions, and other decision analysis tools and methods are taught to undergraduate students in schools of business, health economics, and public health, and are examples of operations research or management science methods. These tools are also used to predict decisions of householders in normal and ...

  3. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision trees are often employed to understand algorithms for sorting and other similar problems; this was first done by Ford and Johnson. [1]For example, many sorting algorithms are comparison sorts, which means that they only gain information about an input sequence ,, …, via local comparisons: testing whether <, =, or >.

  4. Issue tree - Wikipedia

    en.wikipedia.org/wiki/Issue_tree

    An issue tree, also called logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right. [1]: 47 Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also ...

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [35] [36] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  6. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    In contrast, decision trees count each decision as a single step. Dobkin and Lipton [13] show an lower bound on linear decision trees for the knapsack problem, that is, trees where decision nodes test the sign of affine functions. [14] This was generalized to algebraic decision trees by Steele and Yao. [15]

  7. Multiple-criteria decision analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple-criteria_decision...

    In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).

  8. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...

  9. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Potential ID3-generated decision tree. Attributes are arranged as nodes by ability to classify examples. Values of attributes are represented by branches. In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset.