Ads
related to: transitivity vs transitive verbs exercises
Search results
Results From The WOW.Com Content Network
Transitivity is a linguistics property that relates to whether a verb, participle, or gerund denotes a transitive object. It is closely related to valency , which considers other arguments in addition to transitive objects.
Transitive phrases, i.e. phrases containing transitive verbs, were first recognized by the stoics and from the Peripatetic school, but they probably referred to the whole phrase containing the transitive verb, not just to the verb. [10] [11] The advancements of the stoics were later developed by the philologists of the Alexandrian school. [10]
The following verbs show differences in transitivity between BrE and AmE: agree : Transitive or intransitive in BrE, usually intransitive (except with objective clauses) in AmE ( agree a contract / agree to or on a contract , but I agree that this is a good contract in both).
In linguistic typology, active–stative alignment (also split intransitive alignment or semantic alignment) is a type of morphosyntactic alignment in which the sole argument ("subject") of an intransitive clause (often symbolized as S) is sometimes marked in the same way as an agent of a transitive verb (that is, like a subject such as "I" or "she" in English) but other times in the same way ...
In linguistic typology, tripartite alignment is a type of morphosyntactic alignment in which the main argument ('subject') of an intransitive verb, the agent argument ('subject') of a transitive verb, and the patient argument ('direct object') of a transitive verb are each treated distinctly in the grammatical system of a language. [1]
In linguistics, valency or valence is the number and type of arguments and complements controlled by a predicate, content verbs being typical predicates. Valency is related, though not identical, to subcategorization and transitivity, which count only object arguments – valency counts all arguments, including the subject.
Vertex-transitive graph, a graph whose automorphism group acts transitively upon its vertices; Transitive set a set A such that whenever x ∈ A, and y ∈ x, then y ∈ A; Topological transitivity property of a continuous map for which every open subset U' of the phase space intersects every other open subset V, when going along trajectory
Transitive alignment: certain Iranian languages, such as Rushani, distinguish only transitivity (in the past tense), using a transitive case for both A and O, and an intransitive case for S. That is sometimes called a double-oblique system, as the transitive case is equivalent to the accusative in the non-past tense.