Search results
Results From The WOW.Com Content Network
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
Many practical problems can be represented by graphs. Emphasizing their application to real-world systems, the term network is sometimes defined to mean a graph in which attributes (e.g. names) are associated with the vertices and edges, and the subject that expresses and understands real-world systems as a network is called network science.
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14] Graphs are one of the prime objects of study in discrete mathematics.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The analytic functions have many fundamental properties. In particular, an analytic function of a real variable extends naturally to a function of a complex variable. It is in this way that the exponential function, the logarithm, the trigonometric functions and their inverses are extended to functions of a complex variable.
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.
In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.