Search results
Results From The WOW.Com Content Network
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
Soil sieve nests with dry soil aggregates after removal from a laboratory drying oven. Soil aggregate stability is a measure of the ability of soil aggregates—soil particles that bind together—to resist breaking apart when exposed to external forces such as water erosion and wind erosion, shrinking and swelling processes, and tillage.
The Plastic Limit is the water content at which the soil behavior transitions from that of a plastic solid to a brittle solid. The Shrinkage Limit corresponds to a water content below which the soil will not shrink as it dries. The consistency of fine grained soil varies in proportional to the water content in a soil.
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1]Chemical stability may also refer to the shelf-life of a particular chemical compound; that is the duration of time before it begins to degrade in response to environmental factors.
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. [2]
Apart from the basic soil composition, which is constant at one location, soil thermal properties are strongly influenced by the soil volumetric water content, volume fraction of solids and volume fraction of air. Air is a poor thermal conductor and reduces the effectiveness of the solid and liquid phases to conduct heat.