Search results
Results From The WOW.Com Content Network
It may happen that this makes the coefficient 0. [12] Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, [d] a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial. A real polynomial is a polynomial with real coefficients.
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
A solution of a polynomial system is a tuple of values of (x 1, ..., x m) that satisfies all equations of the polynomial system. The solutions are sought in the complex numbers, or more generally in an algebraically closed field containing the coefficients. In particular, in characteristic zero, all complex solutions are sought
The eigenvalues of a 3×3 matrix are the roots of a cubic polynomial which is the characteristic polynomial of the matrix. The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation.
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
The quadratic formula, which concisely expresses the solutions of all quadratic equations The Rubik's Cube group is a concrete application of group theory. [26] Algebra is the art of manipulating equations and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were the two main precursors of algebra.
Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.
[12] [13] Consider the ring A = R [ x , y , z ] of polynomials in three variables over the real numbers and its field of fractions M = R ( x , y , z ). The projective dimension of M as A -module is either 2 or 3, but it is independent of ZFC whether it is equal to 2; it is equal to 2 if and only if CH holds.