Search results
Results From The WOW.Com Content Network
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
The dope vector is a complete handle for the array, and is a convenient way to pass arrays as arguments to procedures. Many useful array slicing operations (such as selecting a sub-array, swapping indices, or reversing the direction of the indices) can be performed very efficiently by manipulating the dope vector.
This was really only relevant for presentation, because matrix multiplication was stack-based and could still be interpreted as post-multiplication, but, worse, reality leaked through the C-based API because individual elements would be accessed as M[vector][coordinate] or, effectively, M[column][row], which unfortunately muddled the convention ...
If the 4th component of the vector is 0 instead of 1, then only the vector's direction is reflected and its magnitude remains unchanged, as if it were mirrored through a parallel plane that passes through the origin. This is a useful property as it allows the transformation of both positional vectors and normal vectors with the same matrix.
If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method is characterized by the algebraization of general system theory, which makes it possible to use Kronecker vector-matrix structures.
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
A coordinate vector is commonly organized as a column matrix (also called a column vector), which is a matrix with only one column. So, a column vector represents both a coordinate vector, and a vector of the original vector space.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: