Search results
Results From The WOW.Com Content Network
In statistics, a studentized residual is the dimensionless ratio resulting from ... then it is called the internally studentized residual, ... Normalization (statistics)
In statistics and applications of statistics, normalization can have a range of meanings. [1] ... residuals, means and standard ... Studentized residual
In statistics, Studentization, named after William Sealy Gosset, who wrote under the pseudonym Student, is the adjustment consisting of division of a first-degree statistic derived from a sample, by a sample-based estimate of a population standard deviation.
In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.
The studentized bootstrap, also called bootstrap-t, is computed analogously to the standard confidence interval, but replaces the quantiles from the normal or student approximation by the quantiles from the bootstrap distribution of the Student's t-test (see Davison and Hinkley 1997, equ. 5.7 p. 194 and Efron and Tibshirani 1993 equ 12.22, p. 160):
In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...
William Sealy Gosset (13 June 1876 – 16 October 1937) was an English statistician, chemist and brewer who served as Head Brewer of Guinness and Head Experimental Brewer of Guinness and was a pioneer of modern statistics. He pioneered small sample experimental design and analysis with an economic approach to the logic of uncertainty.
The reason why we need to add a term to ensure normalization, rather than multiply as is usual, is because we have taken the logarithm of the probabilities. Exponentiating both sides turns the additive term into a multiplicative factor, so that the probability is just the Gibbs measure: