Search results
Results From The WOW.Com Content Network
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
An important special case is when the index set is , the natural numbers: this Cartesian product is the set of all infinite sequences with the i-th term in its corresponding set X i. For example, each element of ∏ n = 1 ∞ R = R × R × ⋯ {\displaystyle \prod _{n=1}^{\infty }\mathbb {R} =\mathbb {R} \times \mathbb {R} \times \cdots } can ...
In set theory, any two sets are defined to be equal if they have all the same members. This is called the Axiom of extensionality. Usually set theory is defined within logic, and therefore uses the equality described above, however, if a logic system does not have equality, it is possible to define equality within set theory.
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
Equality is also the only relation on a set that is reflexive, symmetric and antisymmetric. In algebraic expressions, equal variables may be substituted for one another, a facility that is not available for equivalence related variables. The equivalence classes of an equivalence relation can substitute for one another, but not individuals ...
The equivalence class of a set A under this relation, then, consists of all those sets which have the same cardinality as A. There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each