When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]

  3. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    In nonparametric statistics, a kernel is a weighting function used in non-parametric estimation techniques. Kernels are used in kernel density estimation to estimate random variables' density functions, or in kernel regression to estimate the conditional expectation of a random variable.

  4. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    kde2d.m A Matlab function for bivariate kernel density estimation. libagf A C++ library for multivariate, variable bandwidth kernel density estimation. akde.m A Matlab m-file for multivariate, variable bandwidth kernel density estimation. helit and pyqt_fit.kde Module in the PyQt-Fit package are Python libraries for multivariate kernel density ...

  5. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  7. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    Therefore, the kernel derived from LMC is a sum of the products of two covariance functions, one that models the dependence between the outputs, independently of the input vector (the coregionalization matrix ), and one that models the input dependence, independently of {()} = (the covariance function (, ′)).

  8. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel functions have been introduced for sequence data, graphs, text, images, as well as vectors. Algorithms capable of operating with kernels include the kernel perceptron , support-vector machines (SVM), Gaussian processes , principal components analysis (PCA), canonical correlation analysis , ridge regression , spectral clustering , linear ...

  9. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    The linear regression model turns out to be a special case of this setting when the kernel function is chosen to be the linear kernel. In general, under the kernel machine setting, the vector of covariates is first mapped into a high-dimensional (potentially infinite-dimensional) feature space characterized by the kernel function chosen.

  1. Related searches kernel regression matlab function list with pictures and names of items

    what is kernel regressionkernel definition statistics
    kernel regression wikipediawhat is a kernel