When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.

  3. Pythagorean expectation - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_expectation

    Pythagorean expectation is a sports analytics formula devised by Bill James to estimate the percentage of games a baseball team "should" have won based on the number of runs they scored and allowed. Comparing a team's actual and Pythagorean winning percentage can be used to make predictions and evaluate which teams are over-performing and under ...

  4. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.

  5. Linear prediction - Wikipedia

    en.wikipedia.org/wiki/Linear_prediction

    Linear prediction is a mathematical operation where future values of a discrete-time signal are estimated as a linear function of previous samples. In digital signal processing , linear prediction is often called linear predictive coding (LPC) and can thus be viewed as a subset of filter theory .

  6. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Prediction intervals are commonly used as definitions of reference ranges, such as reference ranges for blood tests to give an idea of whether a blood test is normal or not. For this purpose, the most commonly used prediction interval is the 95% prediction interval, and a reference range based on it can be called a standard reference range.

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The above equations are efficient to use if the mean of the x and y variables (¯ ¯) are known. If the means are not known at the time of calculation, it may be more efficient to use the expanded version of the α ^ and β ^ {\displaystyle {\widehat {\alpha }}{\text{ and }}{\widehat {\beta }}} equations.

  8. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Here two sets of prediction equations are combined into a single estimation scheme and a single set of normal equations. One set is the set of forward-prediction equations and the other is a corresponding set of backward prediction equations, relating to the backward representation of the AR model:

  9. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    Confusingly, sometimes when people refer to wMAPE they are talking about a different model in which the numerator and denominator of the wMAPE formula above are weighted again by another set of custom weights . Perhaps it would be more accurate to call this the double weighted MAPE (wwMAPE).