Search results
Results From The WOW.Com Content Network
The closest neighbor b to any point p is on an edge bp in the Delaunay triangulation since the nearest neighbor graph is a subgraph of the Delaunay triangulation. The Delaunay triangulation is a geometric spanner : In the plane ( d = 2 ), the shortest path between two vertices, along Delaunay edges, is known to be no longer than 1.998 times the ...
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to ().
The Delaunay tessellation field estimator (DTFE), (or Delone tessellation field estimator (DTFE)) is a mathematical tool for reconstructing a volume-covering and continuous density or intensity field from a discrete point set.
In mesh generation, Delaunay refinements are algorithms for mesh generation based on the principle of adding Steiner points to the geometry of an input to be meshed, in a way that causes the Delaunay triangulation or constrained Delaunay triangulation of the augmented input to meet the quality requirements of the meshing application.
The input to the constrained Delaunay triangulation problem is a planar straight-line graph, a set of points and non-crossing line segments in the plane.The constrained Delaunay triangulation of this input is a triangulation of its convex hull, including all of the input segments as edges, and using only the vertices of the input.
Therefore, for these values of β, the circle-based β-skeleton for a set of n points can be constructed in time O(n log n) by computing the Delaunay triangulation and using this test to filter its edges. [2] For β < 1, a different algorithm of Hurtado, Liotta & Meijer (2003) allows the construction of the β-skeleton in time O(n 2).
In 1841 Delaunay proved that the only surfaces of revolution with constant mean curvature were the surfaces obtained by rotating the roulettes of the conics. These are the plane, cylinder, sphere, the catenoid, the unduloid and nodoid.
The Delaunay triangulation is a tessellation that is the dual graph of a Voronoi tessellation. Delaunay triangulations are useful in numerical simulation, in part because among all possible triangulations of the defining points, Delaunay triangulations maximize the minimum of the angles formed by the edges. [ 55 ]