Search results
Results From The WOW.Com Content Network
The following other wikis use this file: Usage on en.wikisource.org Index:Æsop's fables- (IA aesopfables00aesoiala).pdf; Page:Æsop's fables- (IA aesopfables00aesoiala).pdf/1
Radar pulsing causes a phenomenon called aliasing, which occurs when the Doppler frequency created by reflector motion exceeds the pulse repetition frequency (PRF). [1] This concept is related to range ambiguity resolution. Doppler frequency shift is introduced onto reflected signals used by radar.
The magnitude of the shift is a function of the wavelength of the signal and the angular velocity of the antenna: S = r W / λ Where S is the Doppler shift in frequency (Hz), r is the radius of the circle, W is the angular velocity in radians per second, λ is the target wavelength and c is the speed of light in meters per second. [13]
Three common methods are used to calculate the Doppler shift and thus the water velocity along the acoustic beams. The first method uses a monochromatic transmit pulse and is referred to as "incoherent" or "narrowband". The method is robust and provides good quality mean current profiles but has limited space-time resolution.
That is, where () is the maximum Doppler spread or, maximum Doppler frequency or, maximum Doppler shift given by = with being the center frequency of the emitter. Coherence time is actually a statistical measure of the time duration over which the channel impulse response is essentially invariant, and quantifies the similarity of the channel ...
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.
Aesop and the Ferryman; The Ant and the Grasshopper; The Ape and the Fox; The Ass and his Masters; The Ass and the Pig; The Ass Carrying an Image; The Ass in the Lion's Skin
Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver. The analysis used in section Relativistic longitudinal Doppler effect can be extended in a straightforward fashion to calculate the Doppler shift for the case where the inertial motions of the source and receiver are at any specified angle.