When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    Archived 2022-06-28 at the Wayback Machine Dr. Ronald Joe Record's mathematical recreations software laboratory includes an X11 graphical client, lyap, for graphically exploring the Lyapunov exponents of a forced logistic map and other maps of the unit interval.

  3. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    The logistic map is a discrete dynamical system defined by the quadratic difference equation: ... For a one-dimensional map, the Lyapunov exponent λ can be ...

  4. Lyapunov fractal - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_fractal

    A Lyapunov fractal is constructed by mapping the regions of stability and chaotic behaviour (measured using the Lyapunov exponent) in the a−b plane for given periodic sequences of a and b. In the images, yellow corresponds to λ < 0 {\displaystyle \lambda <0} (stability), and blue corresponds to λ > 0 {\displaystyle \lambda >0} (chaos).

  5. Recurrence quantification analysis - Wikipedia

    en.wikipedia.org/wiki/Recurrence_quantification...

    Bifurcation diagram for the Logistic map. RQA measures of the logistic map for various setting of the control parameter a. The measures RR and DET exhibit maxima at chaos-order/ order-chaos transitions. The measure DIV has a similar trend as the maximal Lyapunov exponent (but it is not the same!).

  6. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions. Chaotic maps often occur in the study of dynamical systems.

  7. Kaplan–Yorke conjecture - Wikipedia

    en.wikipedia.org/wiki/Kaplan–Yorke_conjecture

    In applied mathematics, the Kaplan–Yorke conjecture concerns the dimension of an attractor, using Lyapunov exponents. [ 1 ] [ 2 ] By arranging the Lyapunov exponents in order from largest to smallest λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n {\displaystyle \lambda _{1}\geq \lambda _{2}\geq \dots \geq \lambda _{n}} , let j be the largest index for which

  8. Tent map - Wikipedia

    en.wikipedia.org/wiki/Tent_map

    The tent map with parameter μ = 2 and the logistic map with parameter r = 4 are topologically conjugate, [1] and thus the behaviours of the two maps are in this sense identical under iteration. Depending on the value of μ, the tent map demonstrates a range of dynamical behaviour ranging from predictable to chaotic.

  9. Feigenbaum constants - Wikipedia

    en.wikipedia.org/wiki/Feigenbaum_constants

    Feigenbaum originally related the first constant to the period-doubling bifurcations in the logistic map, but also showed it to hold for all one-dimensional maps with a single quadratic maximum. As a consequence of this generality, every chaotic system that corresponds to this description will bifurcate at the same rate.