When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  4. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    NP-complete problems are in NP, the set of all decision problems whose solutions can be verified in polynomial time; NP may be equivalently defined as the set of decision problems that can be solved in polynomial time on a non-deterministic Turing machine.

  5. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  6. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [ 18 ]

  7. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  8. Problem statement - Wikipedia

    en.wikipedia.org/wiki/Problem_statement

    There are several basic elements that can be built into every problem statement. The problem statement should focus on the end user, and the statement should not be too broad or narrow. [7] Problem statements usually follow a format. While there are several options, the following is a template often used in business analysis.

  9. Secretary problem - Wikipedia

    en.wikipedia.org/wiki/Secretary_problem

    One important drawback for applications of the solution of the classical secretary problem is that the number of applicants must be known in advance, which is rarely the case. One way to overcome this problem is to suppose that the number of applicants is a random variable N {\displaystyle N} with a known distribution of P ( N = k ) k = 1 , 2 ...