Search results
Results From The WOW.Com Content Network
For optics like convex lenses, the converging point of the light exiting the lens is on the input side of the focal plane, and is positive in optical power. For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power.
A type of multistable illusion where an image of a concave object, rotated so that the light source is below, may sometimes appear convex, and vice versa. This phenomenon is because light sources tend to shine from above the subject. Delboeuf illusion: An optical illusion of relative size perception.
A concave mirror, or converging mirror, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror.
Examples of real images include the image produced on a detector in the rear of a camera, and the image produced on an eyeball retina (the camera and eye focus light through an internal convex lens). In ray diagrams (such as the images on the right), real rays of light are always represented by full, solid lines; perceived or extrapolated rays ...
A lens with one convex and one concave side is convex-concave or meniscus. Convex-concave lenses are most commonly used in corrective lenses , since the shape minimizes some aberrations. For a biconvex or plano-convex lens in a lower-index medium, a collimated beam of light passing through the lens converges to a spot (a focus ) behind the lens.
A concave-convex cavity has one convex mirror with a negative radius of curvature. This design produces no intracavity focus of the beam, and is thus useful in very high-power lasers where the intensity of the light might be damaging to the intracavity medium if brought to a focus.
A convex secondary mirror is placed just to the side of the light entering the telescope, and positioned afocally so as to send parallel light on to the tertiary. The concave tertiary mirror is positioned exactly twice as far to the side of the entering beam as was the convex secondary, and its own radius of curvature distant from the secondary.
As light travels through space, it oscillates in amplitude. In this image, each maximum amplitude crest is marked with a plane to illustrate the wavefront. The ray is the arrow perpendicular to these parallel surfaces. A light ray is a line or curve that is perpendicular to the light's wavefronts (and is therefore collinear with the wave vector).