When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  3. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  6. Del - Wikipedia

    en.wikipedia.org/wiki/Del

    Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus .

  7. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    From this follows that the directional derivative is the inner product of its direction by the vector derivative. All needs to be observed is that the direction a {\displaystyle a} can be written a = ( a ⋅ e i ) e i {\displaystyle a=(a\cdot e^{i})e_{i}} , so that:

  8. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: Mathematical Handbook of Formulas and Tables (3rd edition) , S. Lipschutz, M.R. Spiegel, J. Liu, Schaum's Outline Series, 2009, ISBN 978-0-07-154855-7 .

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative " — the rate of change over time — is essential for the precise ...