Search results
Results From The WOW.Com Content Network
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
Hugging Face's transformers library can manipulate large language models. [4] Jupyter Notebooks can execute cells of Python code, retaining the context between the execution of cells, which usually facilitates interactive data exploration. [5] Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ...
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
The Transformers library is a Python package that contains open-source implementations of transformer models for text, image, and audio tasks. It is compatible with the PyTorch, TensorFlow and JAX deep learning libraries and includes implementations of notable models like BERT and GPT-2. [15]
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]
Transformer architecture is now used in many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer model. [33]
Generative Pre-trained Transformer 3.5 (GPT-3.5) is a sub class of GPT-3 Models created by OpenAI in 2022. On March 15, 2022, OpenAI made available new versions of GPT-3 and Codex in its API with edit and insert capabilities under the names "text-davinci-002" and "code-davinci-002". [ 28 ]
Other than language models, Vision MoE [36] is a Transformer model with MoE layers. They demonstrated it by training a model with 15 billion parameters. MoE Transformer has also been applied for diffusion models. [37] A series of large language models from Google used MoE. GShard [38] uses MoE with up to top-2 experts per layer. Specifically ...