Search results
Results From The WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Standardized coefficients shown as a function of proportion of shrinkage. In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.
In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative.
The 2004 SSIM paper has been cited over 50,000 times according to Google Scholar, [2] making it one of the highest cited papers in the image processing and video engineering fields. It was recognized with the IEEE Signal Processing Society Best Paper Award for 2009. [ 3 ]
The NLLB-200 by Meta AI is a machine translation model for 200 languages. [40] Each MoE layer uses a hierarchical MoE with two levels. On the first level, the gating function chooses to use either a "shared" feedforward layer, or to use the experts. If using the experts, then another gating function computes the weights and chooses the top-2 ...
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
The algorithm starts with an initial estimate of the optimal value, , and proceeds iteratively to refine that estimate with a sequence of better estimates ,, ….The derivatives of the function := are used as a key driver of the algorithm to identify the direction of steepest descent, and also to form an estimate of the Hessian matrix (second derivative) of ().