Search results
Results From The WOW.Com Content Network
Diffraction is the same physical effect as interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed. [1]: 433 Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.
Optical interference between two point sources that have different wavelengths and separations of sources. A point source produces a spherical wave. If the light from two point sources overlaps, the interference pattern maps out the way in which the phase difference between the two waves varies in space.
Each of these beams travels a different route, called a path, and they are recombined before arriving at a detector. The path difference, the difference in the distance traveled by each beam, creates a phase difference between them. It is this introduced phase difference that creates the interference pattern between the initially identical waves.
The optical path difference between the paths taken by two identical waves can then be used to find the phase change. Finally, using the phase change, the interference between the two waves can be calculated. Fermat's principle states that the path light takes between two points is the path that has the minimum optical path length.
The interference is constructive when the phase difference between the wave reflected off different atomic planes is a multiple of 2π; this condition (see Bragg condition section below) was first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society. [2]
Diagram of a two slit diffraction problem, showing the angle to the first minimum, where a path length difference of a half wavelength causes destructive interference. Multiple-slit arrangements can be mathematically considered as multiple simple wave sources, if the slits are narrow enough.
At any time, the phase difference between the two waves will be constant. If, when they are combined, they exhibit perfect constructive interference, perfect destructive interference, or something in-between but with constant phase difference, then it follows that they are perfectly coherent.
In 1818, Fresnel [5] showed that Huygens's principle, together with his own principle of interference, could explain both the rectilinear propagation of light and also diffraction effects. To obtain agreement with experimental results, he had to include additional arbitrary assumptions about the phase and amplitude of the secondary waves, and ...