When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Einstein Triangle. The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.

  4. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    A change of reference frame can simplify analysis of a collision. For example, suppose there are two bodies of equal mass m, one stationary and one approaching the other at a speed v (as in the figure). The center of mass is moving at speed ⁠ v / 2 ⁠ and both bodies are moving towards it at speed ⁠ v / 2 ⁠. Because of the symmetry ...

  5. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    So the change in the object's mass is equal to the total energy lost divided by c 2. Since any emission of energy can be carried out by a two-step process, where first the energy is emitted as light and then the light is converted to some other form of energy, any emission of energy is accompanied by a loss of mass.

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    When the velocity changes sign (at the maximum and minimum displacements), the magnitude of the force on the mass changes by twice the magnitude of the frictional force, because the spring force is continuous and the frictional force reverses direction with velocity. The jump in acceleration equals the force on the mass divided by the mass.

  7. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The mass of an object as measured in its own frame of reference is called its rest mass or invariant mass and is sometimes written . If an object moves with velocity v {\displaystyle \mathbf {v} } in some other reference frame, the quantity m = γ ( v ) m 0 {\displaystyle m=\gamma (\mathbf {v} )m_{0}} is often called the object's "relativistic ...