Ads
related to: linear equations no solution examples pdfstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In the mathematical study of partial differential equations, Lewy's example is a celebrated example, due to Hans Lewy, of a linear partial differential equation with no solutions. It shows that the analog of the Cauchy–Kovalevskaya theorem does not hold in the smooth category.
An underdetermined linear system has either no solution or infinitely many solutions. For example, + + = + + = is an underdetermined system without any solution; any system of equations having no solution is said to be inconsistent. On the other hand, the system
In mathematics, particularly in algebra, an indeterminate system is a system of simultaneous equations (e.g., linear equations) which has more than one solution (sometimes infinitely many solutions). [1] In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
[1] [citation needed] An overdetermined system is almost always inconsistent (it has no solution) when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.
For example, the equation + = is a simple indeterminate equation, as is =. Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. [2] Some of the prominent examples of indeterminate equations include: Univariate polynomial equation: