When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero crossing - Wikipedia

    en.wikipedia.org/wiki/Zero_crossing

    A zero-crossing in a line graph of a waveform representing voltage over time. A zero-crossing is a point where the sign of a mathematical function changes (e.g. from positive to negative), represented by an intercept of the axis (zero value) in the graph of the function.

  3. Crossing number (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Crossing_number_(graph_theory)

    A drawing of the Heawood graph with three crossings. This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number cr(G) = 3.. In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G.

  4. Marr–Hildreth algorithm - Wikipedia

    en.wikipedia.org/wiki/Marr–Hildreth_algorithm

    Then, zero crossings are detected in the filtered result to obtain the edges. The Laplacian-of-Gaussian image operator is sometimes also referred to as the Mexican hat wavelet due to its visual shape when turned upside-down. David Marr and Ellen C. Hildreth are two of the inventors. [2]

  5. Crossing number inequality - Wikipedia

    en.wikipedia.org/wiki/Crossing_number_inequality

    Thus we can find a graph with at least e − cr(G) edges and n vertices with no crossings, and is thus a planar graph. But from Euler's formula we must then have e − cr(G) ≤ 3n, and the claim follows. (In fact we have e − cr(G) ≤ 3n − 6 for n ≥ 3). To obtain the actual crossing number inequality, we now use a probabilistic argument.

  6. Crossing Numbers of Graphs - Wikipedia

    en.wikipedia.org/wiki/Crossing_Numbers_of_Graphs

    Crossing Numbers of Graphs is a book in mathematics, on the minimum number of edge crossings needed in graph drawings. It was written by Marcus Schaefer, a professor of computer science at DePaul University , and published in 2018 by the CRC Press in their book series Discrete Mathematics and its Applications.

  7. Canny edge detector - Wikipedia

    en.wikipedia.org/wiki/Canny_edge_detector

    A variational explanation for the main ingredient of the Canny edge detector, that is, finding the zero crossings of the 2nd derivative along the gradient direction, was shown to be the result of minimizing a Kronrod–Minkowski functional while maximizing the integral over the alignment of the edge with the gradient field (Kimmel and ...

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  9. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]