Search results
Results From The WOW.Com Content Network
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
The force is a vector field, which can be obtained as a factor of the gradient of the potential energy scalar field. Examples include: Examples include: Potential fields, such as the Newtonian gravitational potential , or the electric potential in electrostatics , are scalar fields which describe the more familiar forces.
A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...
scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per ...
In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar quantity denoted by V or occasionally φ, [1] equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured ...
The electric field of such a uniformly moving point charge is hence given by: [25] = () /, where is the charge of the point source, is the position vector from the point source to the point in space, is the ratio of observed speed of the charge particle to the speed of light and is the angle between and the observed velocity of the charged ...
An electric field is a vector field that associates to each point in space the Coulomb force experienced by a unit test charge. [19] The strength and direction of the Coulomb force F {\textstyle \mathbf {F} } on a charge q t {\textstyle q_{t}} depends on the electric field E {\textstyle \mathbf {E} } established by other charges that it finds ...
Intuitively this is summing up all vector components in line with the tangents to the curve, expressed as their scalar products. For example, given a particle in a force field (e.g. gravitation), where each vector at some point in space represents the force acting there on the particle, the line integral along a certain path is the work done on ...